Към текста

Метаданни

Данни

Включено в книгата
Оригинално заглавие
Lost Science, (Пълни авторски права)
Превод от
, (Пълни авторски права)
Форма
Роман
Жанр
Характеристика
Оценка
5 (× 16 гласа)

Информация

Разпознаване и корекция
Ti6anko (2009)
Сканиране
?

Издание:

Джери Василатос. Изгубените открития

ИК „Бард“, София, 2004

Редактор: Саша Попова

Оформление на корица: „Megachrom“, Петър Христов

История

  1. — Добавяне

Фокус

Оптичните дизайнери добавяли все по-сложни компоненти към оригиналния модел, създаден навремето от Ван Льовенхук. Към лещите се прибавяли лещи, към съставните компоненти се добавяли други съставни компоненти сложността на устройството била направо плашеща. В стремежа си да опрости схемата Райф се върнал към изучаването на оптичната геометрия и разбирането на простата дивергенция на лъчите.

Райф се замислил върху древните принципи. Идеалната увеличителна система трябва да представлява изключително проста геометрична конструкция. Отклоняването на светлинните лъчи може да увеличи всеки обект колкото си искаш пъти. При наличието на силен източник на дивергентна светлина и достатъчно голямо пространство на теория може да се види и невидимото! Това е принципът, на който се основава проекционната микроскопия. Д-р Райф разбрал, че проекционният микроскоп е най-доброто и най-простото средство за увеличаване на безкрайно малки обекти. Трябвало само да се намери начин почти невидимата блестяща точка да проектира дивергентни лъчи върху повърхността, на която и да е частица. Нито един вирус, колкото и коварен да е той, не би могъл да се скрие от подобно оптично устройство.

Теоретичният дизайн на микроскопите изцяло се основава на геометрични принципи. Материализирането на тези принципи изисква манипулация на материали, тъй като геометричните и светлинните лъчи са доста различни неща. Какво всъщност представлява микроскопът? Какво се постига чрез микроскоп със светлинни лъчи? Идеята е съвсем проста. Вземате дивергентните лъчи от изключително малка точка и ги пускате да минат през образеца, който искате да видите. След това лъчите се разделят един от друг колкото позволява наличното пространство. От гледна точка на геометрията е възможно това разстояние да бъде безкрайно и да се получи безкрайно (идеално) увеличение. За осъществяването на тази идеална цел е нужно светлинният източник да бъде съвсем малък и достатъчно ярък, образецът да се намира достатъчно близко до него, а разстоянието, на което се получава уголеменият образ — много голямо. Геометричната дивергенция на точковия светлинен източник е факторът за увеличението. Но геометрията е идеализирана реалност. А при прилагането си на практика всяка теория се сблъсква със значителни, понякога нерешими трудности.

Основният модел микроскоп е проекционният микроскоп. Той представлява най-простата система за голямо увеличение на малки обекти. В най-разпространената му версия светлината минава през образеца, разделя се през голямо разстояние с помощта на много малки фокусиращи лещи, след което се проектира върху матово стъкло. Получените по този начин изображения се разглеждат индиректно, но са много силно увеличени и имат свръхвисока резолюция.

В миналото лабораториите се нуждаели от компактни устройства, които да се използват непосредствено от персонала. Изработването на фини оптически микроскопи се превърнало в изключително сложна задача, когато се появила нужда от по-мощни, но също толкова компактни модели. Идеята на съставния микроскоп е дългото проекционно разстояние да се съкрати физически в късата тръба и да се удовлетвори искането на клиентите за спестяване на пространство. „Проблемът“ при компактните оптически микроскопи е пречупването на широкия по необходимост лъч през малко пространство. „Трикът“ на съставния микроскоп е да не се позволи лъчите на изображението да се отклонят преждевременно между лещите.

Голямото разстояние, необходимо за дивергенцията на лъча, трябвало да се „нагъне“ и „натика“ в тръбата на микроскопите. За целта се използват множество лещи. Естествено получените и от най-скъпите модели „нагънати“ от лещите изображения страдали от редица ограничения. Тъй като уголемяването на изображението в тези микроскопи се „прекъсва“ в рамките на силно скъсеното пространство от няколко реда лещи, не може да се получи силно увеличение с нужната яснота и яркост.

Всяка следваща леща изкривява образа, докато не се постигне изключително ефективна дивергенция. Ефектът е впечатляващ, но необходимите стъпки създават оптично съпротивление, поради което възможностите за увеличение са ограничени. Фундаменталните проблеми с бялата светлина допълнително усложняват проблемите на дизайнерите. При разлагането й отделните цветове не могат да се фокусират в една и съща точка. В резултат на това всяко изображение се замъглява от хроматична аберация[1].

След преминаването през многобройните лещи значително разширените светлинни лъчи достигат лещите на окуляра. Основно изискване е тези лъчи да са успоредни. Преди да достигнат до окуляра обаче, изображенията губят по-голямата част от яркостта си в стените на тръбата. Затова на пътя на лъча се добавят допълнителни коригиращи лещи, които да поемат светлината от стените. Разликите, които се натрупват, когато светлината преминава през въздуха и лещите, водят до появата на още повече аберации. Стълпотворението от коригиращи лещи, корони и допълнителни части запълват пътя на светлината с толкова много кристали, че изображенията губят първоначалната си яркост. Тези страховити оптически проблеми така и не можели да се решат напълно, независимо от цената на уредите.

Всички тези оптически ужаси са резултат на старата традиция, която принуждава дизайнерите да следват отдавна установените и познати форми. Проекционният микроскоп е толкова прост и мощен, че всеки би се запитал защо не са направени нови и по-съвършени модели със същата всеотдайност и жар. Именно традиционната форма налага измененията в простотата на проекционния микроскоп и намалява качеството на изображенията. Онова, което наистина липсва на оптичната микроскопия, са истинските малки източници на монохроматична светлина. Излъчваните от тях лъчи могат да доведат до появата на нови и много по-икономични апарати.

Многобройните оптически компоненти на най-съвършените лабораторни микроскопи са конфигурирани така, че да не позволяват разделянето, несвързаността и аберациите на изображенията. Всички геометрични идеи моментално се изкривяват, когато се стигне до практическото използване на светлина и стъкло. Оптическата реалност не е в състояние да достигне геометричния идеал.

Геометричните лъчи не отслабват при безкрайно големи разстояния. Това обаче не се отнася за светлинните. Геометричните лъчи не губят резките си граници при увеличаващата се дивергенция. Светлинните обаче го правят. Геометрично увеличените линии не намаляват яркостта си. Светлинните изображения помръкват. Успешната оптическа реализация на геометричния идеал би довела до появата на супер микроскоп. Д-р Райф решил да манипулира всички налични променливи, за да може да доближи колкото се може повече всяка една част до идеалната геометрична конструкция. Ако подобно начинание успеело, то щяло да запълни празнината между оптичната и електронната микроскопия.

Бележки

[1] Цветно разсейване. — Б.ред.