Към текста

Метаданни

Данни

Включено в книгата
Оригинално заглавие
A Short History of Nearly Everything, (Пълни авторски права)
Превод от
, (Пълни авторски права)
Форма
Научен текст
Жанр
Характеристика
  • Няма
Оценка
5,3 (× 39 гласа)

Информация

Сканиране, разпознаване и корекция
moosehead (2007)
Допълнителна корекция
slacker (2009)

Издание:

Бил Брайсън. Кратка история на почти всичко

Отговорен редактор: Ваня Томова

Редактор: Илия Иванов

Технически редактор: Божидар Стоянов

Предпечатна подготовка: Мирослав Стоянов

Издателство Сиела — софт енд пъблишинг, 2005

ISBN 954–649–793–2

 

Transworld publishers, a division of The Random House Group Ltd

История

  1. — Добавяне
  2. — Редакция: slacker

11. Кварките на Мъстър Марк

През 1911 г. британски учен на име Ч. Т. Р. Уилсън изучавал образуването на облаците, като непрекъснато се бъхтел до върха на Бен Нейвис, шотландска планина, известна с влагата си, когато му хрумнало, че трябва да има по-лесен начин за изучаване на облаците. Като се върнал в лабораторията Кавендиш в Кеймбридж, изградил зала за изкуствени облаци — просто изобретение, с което можел да охлажда и овлажнява въздуха, създавайки удачен модел на облак в лабораторни условия.

Приспособлението работело много добре, но имало и допълнително, неочаквано предимство. Когато той ускорявал алфа-частца през залата, за да отсява измислените си облаци, тя оставяла видима следа — като тази на минаващ пътнически самолет. Току-що бил изобретил детектора на частици. Той давал убедителни доказателства, че наистина съществували субатомни частици.

Накрая други двама учени от „Кавендиш“ изобретили по-мощен уред за протонови лъчи, а Ърнест Лоурънс в Бъркли, Калифорния, създал известния си и впечатляващ циклотрон или разбивач на атоми, както такива уреди били интригуващо наричани дълго време. Всички тези изобретения работели — и още работят — на повече или по-малко един и същи принцип. Идеята била да се ускори протон или друга заредена частица до изключително висока скорост по някаква траектория (понякога кръгообразна, понякога линейна), след това да се сблъска с друга частица и да се види какво ще излети. Ето защо тези уреди били наричани разбивачи на атоми. Науката не била в най-изтънчения си вид, но в общи линии имало ефект.

С изграждането на по-големи и по-амбициозни машини физиците започнали да намират или да допускат съществуването на частици или семейства от частици, почти до безчет: мюони, пиони, хиперони, мезони, К-мезони, Хигс-бозони, междинни вектор бозони, бариони, тахиони. Дори физиците започнали да се чувстват малко неудобно. „Млади човече“ — отвърнал Енрико Ферми на един студент, когато бил запитан за името на една определена частица — „ако можех да запомня имената на тези частици, щях да съм ботаник.“

Днес ускорителите на частици носят имена, които Флаш Гордън би използвал при битка: суперпротонен синхротрон, голям електрон-позитронен ускорител, голям адронен ускорител, тежкойонен ускорител. Като използват огромни количества енергия (с някои се работи само нощем, така че хората в съседните градове да не забележат как осветлението им намалява, когато такава апаратура се задейства), те могат да сблъскват частиците до такава степен, че един електрон може да направи 47 000 обиколки на тунел, дълъг 6 километра, за секунда. Има опасения, че в ентусиазма си учените могат по невнимание да създадат черна дупка или дори нещо, наречено „странни кварки“, което теоретически би могло да влезе във взаимодействие с други субатомни частици и да се разпространи безконтролно. Ако четете това, значи това още не е станало.

Нужна е известна концентрация, за да се открият частици. Те не са само малки и бързи, но често са и измамно мимолетни. Частиците могат да се появят и да изчезнат само за 0,000000000000000000000001 секунда (10 на степен –24). Дори най-мудните от нестабилните частици просъществуват за не повече от 0,0000001 секунда (10 на степен –7).

Някои частици просто са абсурдно неуловими. Всяка секунда Земята се посещава от 10 000 трилиона трилиона миниатюрни, всякакви, но безтегловни неутрино (повечето изстреляни от ядрената горещина на Слънцето) и фактически почти всички те преминават направо през планетата и всичко, което е върху й, включително през вас и мен, като че ли там няма нищо. За да уловят само няколко от тях, учените се нуждаят от резервоари, съдържащи 50 милиона литра тежка вода (т.е. вода с относително изобилие на деутерий в нея) в подземни кухини (обикновено стари мини), където не може да се получат смущения от други видове радиация.

Доста често някое минаващо неутрино ще се сблъска с едно от атомните ядра във водата и ще произведе малък взрив на енергия. Учените броят взривяванията и по такъв начин ни приближават по-близо до разгадаването на фундаменталните свойства на вселената. През 1998 г. японски наблюдатели съобщили, че неутриното има маса, но не особено голяма — около една десетмилионна от тази на електрона.

Това, което днес е нужно, за да се открият нови частици, е пари и то много. Има любопитна обратнопропорционална връзка в съвременната физика между малкия размер на това, което се търси, и мащаба на съоръженията, нужни за търсенето. CERN — Европейската лаборатория за физика на частиците, е като малък град на границата между Франция и Швейцария. В нея работят три хиляди души и тя заема площ, която се измерва в квадратни километри. CERN притежава низ от магнити, които тежат повече от Айфеловата кула, както и подземен тунел, дълъг 25 километра.

Да се разделят атомите е лесно, както отбелязва Джеймс Трефил; всеки път го правим, като включим флуоресцентна лампа. За да се раздели обаче атомно ядро са нужни много пари и изобилие от електричество. За да се стигне до нивото на кварките — частиците, които съставляват частиците — е нужно още повече: трилиони волтове електричество и бюджет на малка централноамериканска страна. Най-новият ускорител на CERN наречен Large Hadron Collider (Голям адронен ускорител), се планира да влезе в експлоатация през 2005 г. и ще може да достига 14 трилиона електронволта енергия, а конструирането му ще струва над 1,5 милиарда долара.[1]

Тези числа са нищо в сравнение с това, което щяло да бъде постигнато и изразходвано за огромния и за жалост несбъднат суперускорител, наречен Superconducting Supercollider, който започнали да конструират близо до Уаксхачи, Тексас, през 1980-те, преди самият проект да се сблъска с Американския конгрес. Целта на ускорителя била да позволи на учените да вникнат в „пределната същност на материята“, както винаги се цитира, като пресъздадат колкото е възможно по-близо условията във вселената през първите й десет хиляди милиардни от секундата. Планът бил да се изстрелят частици през тунел, дълъг около 10 километра, постигайки наистина изумителните 99 трилиона електронволта енергия. Бил грандиозен план, но изграждането му щяло да струва 8 милиарда долара (число, което накрая достигнало 10 милиарда долара) и стотици милиона долара годишно за разходи.

Вероятно най-добрият пример в историята за изсипване на пари в дупка в земята е, когато Конгресът изразходвал 2 милиарда за проекта и след това го спрял през 1993 г., след като били изкопани 20 километра от тунела. Така че днес Тексас може да се похвали с най-скъпата дупка в света. Мястото сега е, както ми беше казано от приятеля ми Джеф Гуин от Форт Уърт Стар Телеграм, „в основни линии едно огромно изчистено поле с малки сгушени и изпълнени с разочарование градове, разпръснати по периферията му.“

След провала на суперускорителя физиците на елементарните частици поставят целите си малко по-ниско, но дори сравнително скромни проекти могат да са зашеметяващо скъпи, когато се сравняват с, да кажем, почти всичко друго. Според плановете за една бъдеща обсерватория за неутрино в старата мина Хоумстейк в Лийд, Южна Дакота, тя ще струва 500 милиона долара, за да се построи — и това в мина, която вече е изкопана — преди дори да се сметнат годишните текущи разходи. Ще има и допълнителни 281 милиона долара за „общи разходи за възстановяване“. Междувременно само обновяване на ускорител на частици във Фермилаб в Илиной струваше 260 милиона долара.

Накратко, физиката на елементарните частици е изключително скъпо, но продуктивно начинание. Понастоящем броят на частиците надхвърля 150 и се подозира, че има още 100, но, за жалост, по думите на Ричард Фейнман — „много е трудно да се разбере взаимовръзката между всичките тези частици, както и за какво са нужни на природата и какви са връзките им една с друга.“ Неминуемо всеки път, когато успяваме да отключим една кутия, откриваме, че вътре има друга заключена кутия. Някои смятат, че съществуват частици, наречени тахиони, които могат да се движат по-бързо от скоростта на светлината. Други жадуват да открият гравитоните — базата на гравитацията. Карл Сейгън в Космос разисква възможността, че ако се спуснем навътре в електрона, би могло да открием, че той съдържа своя собствена вселена, напомняйки ни за цялата тази научна фантастика от петдесетте години. „Вътре, организирани в локален еквивалент на галактиките и в по-малки структури, има огромен брой други, много по-малки елементарни частици, които сами по себе си са вселени в едно следващо ниво, и така до безкрайност — една безбрежна регресия надолу, вселени във вселени, до безкрай. А също и нагоре.“ За повечето от нас това е свят, който надхвърля възможностите ни за разбиране на нещата. Днес за да се прочете дори елементарен наръчник по физика на елементарните частици, трябва да се справим с лексикални премеждия от рода на „Зареденият пион и антипион се разпадат съответно в миони плюс антинеутрино, и антимион плюс неутрино със средно време на полуразпад от 2,603×10 на степен –8 секунди неутралният пион се разпада на два фотона със среден полуразпад от около 0,8×10 на степен –16 секунди, а мионът и антимионът се разпадат съответно в…“ И така нататък — и това е от книга за обикновения читател, написана от най-разбираемите (в повечето случаи) от интерпретаторите — Стивън Уайнбърг.

 

През 1960-те в опит да се опростят малко нещата физикът от Калифорнийския технологичен институт Мъри Гел-Ман измислил нов клас частици, по думите на Стивън Уайнбърг „за да постигне известна икономичност в множеството от адрони“ — събирателен термин, използван от физиците за протоните, неутроните и други частици, управлявани от силното ядрено взаимодействие. Теорията на Гел-Ман гласяла, че всички адрони са съставени от още по-малки и по-фундаментални частици. Колегата му Ричард Фейнман искал да нарече тези основни частици партони, като Доли Партон, но решението му било отхвърлено. Вместо това те станали известни като кварки.

Гел-Ман взел името от ред във „Бдение за Финеган“ на Дж. Джойс: „Три кварки за Мъстър Марк!“ (Вещите физици римуват думата quarks със storks — щъркели, а не larks — чучулиги, въпреки че произношението на последната е това, което Джойс е имал предвид.) Фундаменталната простота на кварките не продължила дълго. След като те станали по-разбираеми, трябвало да се въведат подгрупи. Въпреки че кварките са твърде малки, за да имат цвят или вкус, или каквито и да са други физични характеристики, които да различаваме, те са класифицирани в шест категории — горе, долу, странност, чар, връх, дъно — които физиците чудато наричат техен „вкус“, а те се подразделят по-нататък на цветове — червен, зелен и син. (Човек не може да не заподозре, че не случайно тези термини за първи път се употребяват в Калифорния в епохата на наркоманията.)

Накрая от всичко това се появил така наречения Стандартен модел, който в основни линии е комплект от частици за субатомния свят. Стандартният модел се състои от шест кварки, шест лептона, пет известни бозона и предполагаемия шести — бозонът на Хигс (наречен на шотландския учен Питър Хигс), плюс три от четирите физични сили: силните и слабите ядрени взаимодействия и електромагнетизмът.

В общи линии постановката е, че сред основните градивни тухлички на материята са кварките; те са свързани чрез частици, наречени глюони; заедно кварките и глюоните формират протоните и неутроните — материята на атомното ядро. Лептоните са източник на електрони и неутрино. Кварките и лептоните заедно се наричат фермиони. Бозоните (наречени на индийския физик С. Н. Бозе) са частици, които пораждат и са носители на силите, и включват фотони и глюони. Бозонът „Хигс“ може би съществува, а може би не; бил е измислен просто за да даде на частиците маса.

Както се вижда, малко е объркващо, но това е най-простият модел, който може да даде обяснение какво става в света на частиците. Повечето физици по елементарните частици осъзнават, както Леон Ледерман отбелязва през 1985 г. в документален филм по телевизия PBS, че на Стандартния модел му липсва елегантност и простота. „Твърде сложен е. Има твърде много произволни параметри“ — казва Ледерман. „Някак си не виждаме създателят да си играе с двайсет копчета, за да заложи двайсет параметъра, с цел да създаде вселената такава, каквато я знаем.“ Физиката не е нищо друго освен търсенето на върховната простота, но засега всичко, което имаме, е една елегантна бъркотия — или, както Ледерман го формулира: „Налице е силното чувство, че картината не е красива.“

Стандартният модел не само че не е прекрасен, той е и непълен. Първо, нищо не казва относно гравитацията. Колкото и да търсим, в Стандартния модел нищо не можем да намерим, което да ни обясни, защо като поставим шапка върху стол, тя не полита към тавана. Нито пък, както отбелязахме, обяснява какво представлява величината маса. За да можем да дадем на частиците въобще някаква маса, трябва да въведем въображаемия бозон Хигс; дали въобще той съществува, е въпрос, който физиката през двайсети и първи век трябва да разреши. Както Фейнман закачливо отбелязва: „Така че ние си имаме теория, но не знаем дали тя е правилна или погрешна, но това, което знаем, е, че е малко погрешна, или най-малкото непълна.“

В опит да съберат всичко заедно физиците предлагат нещо, наречено теория на суперструните. Тя приема, че всички тези малки неща като кварките и лептоните, които преди сме смятали за частици, са всъщност „струни“ — вибриращи нишки от енергия, които осцилират в единайсет измерения, състоящи се от три, които вече познаваме плюс времето и седем други измерения, които — ами тях просто още не ги познаваме. Струните са много малки — достатъчно малки, за да минат за безразмерни (точкови) частици.

С въвеждането на допълнителни измерения теорията за суперструните дава възможност на физиците да обединят квантовите и гравитационните закони в една не особено обемна идея, но това означава, че каквото и да кажат учените за теорията, то започва да звучи обезпокоително, подобно на мисли от рода на тези, които ще те накарат да се отдръпнеш, ако ти бъдат съобщени от непознат на пейка в парка. Ето например как физикът Мичио Каку обяснява структурата на вселената според струнната теория:

 

„Хетеротичната струна се състои от затворена струна, която има два вида вибрации — по посока на движението и по посока, обратна на движението на часовниковите стрелки, които се третират различно. Вибрациите по посока на часовниковите стрелки съществуват в пространство с 10 измерения. Тези с посока, обратна на часовниковите стрелки, съществуват в пространство с 26 измерения, от които 16 измерения са уплътнени. (Припомняме, че при първоначалните пет измерения на Калуза петото измерение бе уплътнено, като бе обхванато от кръг.)“

 

И е все така в следващите 350 страници.

Струнната теория поражда по-нататък нещо, наречено „М-теория“, която включва повърхности, известни като мембрани — или просто „брани“ за хипердушите в света на физиката. Страхувам се, че това е спирката по пътя на познанието, където повечето от нас трябва да слязат. Ето едно изречение от Ню Йорк Таймс, което обяснява това по най-простия начин на обикновения читател:

 

„Екпиротичният процес започва далече в неопределеното минало с двойка плоски, празни брани, разположени паралелно една на друга в изкривено петмерно пространство… Двете брани, които формират стените на петото измерение, може да са се появили от нищото като квантова флуктуация, дори в по-далечното минало и след това да са се разделили.“

 

Спор няма. Но нищо не се и разбира. Екпиротично, между другото, произлиза от гръцката дума за „бързо горене“.

Нещата във физиката стигнали дотам, че, както Поул Дейвис отбелязва в Нейчър, „почти е невъзможно за тези, които не са учени, да правят разлика между легитимно странното и това, което е абсолютно налудничаво.“ Въпросът станал актуален по един интересен начин, когато през есента на 2002 г. двама френски физици, близнаците Игор и Гришка Богданови, създават амбициозно наситена теория, засягаща такива понятия като „имагинерно време“ и „състоянието Кубо-Швингер-Мартин“, претендиращи да опишат нищото, което е била вселената преди Големия взрив — период, който винаги се е смятал за непознаваем (тъй като предхожда зараждането на физиката и реквизитите й).

Почти веднага трудът на Богданови породил спор между физиците дали е само празни приказки, плод на гениалност или баламосване. „В научен план той е повече или по-малко абсолютна безмислица“ — казва пред Ню Йорк Таймс физикът Питър Уойт от Колумбийския университет — „но в днешно време това не го различава много от останалата литература.“

Карл Попър, когото Стивън Уайнбърг нарича „главната фигура в съвременната философска наука“, веднъж изказва предположението, че навярно няма окончателна теория във физиката — а че по-скоро всяко обяснение може да се нуждае от друго обяснение, като се получава „безкрайна верига от все по- и по-фундаментални принципи.“ Конкурентната възможност е, че такова познание може би е отвъд нашите способности. „Засега, за щастие“ — пише Уайнбърг в Мечти за окончателна теория — „не изглежда да сме достигнали края на интелектуалните си възможности.“

Почти сигурно е, че това е област, в която ще има по-нататъшно развитие на мисълта, както и почти сигурно е, че тези мисли отново ще бъдат много далеч за повечето от нас.

Докато физиците в средата на двайсети век озадачено вниквали в света на много малкото, астрономите проявявали не по-малко впечатляваща неспособност да разберат вселената като цяло.

Когато за последен път се срещнахме с Едвин Хъбъл, той бе открил, че почти всички галактики в полезрението ни се „разбягват от нас“ и че скоростта и разстоянието на това отдалечаване са точно пропорционални: колкото по-далече е галактиката, толкова по-бързо се движи. Хъбъл осъзнал, че това може да се изрази с простото уравнение H0=v/d (в което H0 е константа, v е скоростта на отдалечаване на летящата галактика, а d — разстоянието от нас). Оттогава насам H0 е известна като константа на Хъбъл, а цялото — като закон на Хъбъл. Като използвал формулата си, Хъбъл изчислил, че вселената е на два милиарда години, което било малко смущаващо, тъй като дори и преди 1920-те било пределно ясно, че много неща във вселената — дори самата Земя — навярно били по-стари от това. Уточняването на тази стойност е едно неспирно занимание на космологията.

Единственото константно нещо относно константната на Хъбъл са многобройните разногласия каква стойност да й дадат. През 1956 г. астрономите открили, че променливостта на Цефеидите е по-променлива, отколкото са смятали; били в две разновидности, а не една. Това им позволило да направят преизчисления и да предложат нова възраст на вселената от 7 до 20 милиарда години — не е ужасно прецизно, но интервалът за възрастта е достатъчен, за да обхване формирането на Земята.

През следващите години избухнал продължителен спор между Алън Сандидж, наследник на Хъбъл в „Маунт Уилсън“, и Жерар дьо Вокульор, астроном от френски произход, работещ в Тексаския университет. След дълги години на внимателни изчисления Сандидж получил стойност за константата на Хъбъл 50, като дал на вселената възраст 20 милиарда години. Де Вокульор бил сигурен, че константата на Хъбъл е 100.[2] Това означавало, че вселената е само на половината години, които Сандидж й давал — 10 милиарда години. Нещата станали още по-несигурни, когато през 1994 г. екип от обсерваториите „Карнеги“ в Калифорния, използвайки измервания от космическия телескоп „Хъбъл“, изказали предположението, че вселената може би е на само 8 милиарда години — възраст, за която и те признали, че е по-млада, отколкото звездите във вселената. През февруари 2003 г. екип от НАСА и космическия център „Годард“ в Мериланд, използвайки нов, с голям обхват, сателит, наречен Wilkinson Microwave Anisotropy Probe (Микровълнова анизотропна сонда на Уилкинсън), съобщават с известна увереност, че възрастта на вселената е 13,7 милиарда години, плюс минус около 100 милиона години. Така стоят нещата, поне към момента.

Трудното в постигането на окончателни решения е, че има изключително много място за интерпретация. Представете си, че стоите в поле нощем и се опитвате да установите колко далече са две различно отдалечени от вас електрически светлини. Използвайки не особено сложни астрономически прибори, достатъчно лесно можете да определите, че крушките са с еднаква яркост, и че едната е, да кажем, 50% по-далеч от другата. Но това, за което не можете да сте сигурни, е дали по-близката светлина е, да кажем, от крушка 40 вата, която е на 30 метра разстояние или е от крушка 60 вата, която е на разстояние 45 метра. Отгоре на това трябва да се вземат предвид и толерансите, дължащи се на промените в атмосферата на земята, на наличието на междугалактичен прах, замъгляващ светлината от по-близки звезди, и на много други фактори. Резултатът е, че изчисленията ви по необходимост се основават на серия от удобни предположения, всяко от които може да е източник на спорове. Така също съществува и проблемът, че достъпът до телескопи е винаги на висока цена и исторически измерването на червените отмествания е известно с високите си разходи за телескопно време. Цяла нощ може да отнеме, само за да се направи една експонация. В резултат на това астрономите понякога са принудени (или имат желание) да основават заключенията си на забележително оскъдни доказателства. В космологията, както казва Джефри Кар, „доказателствата за теориите са такива, че теория колкото планина обосноваваме с доказателства колкото къртичина.“ Или както се изрази Марти Рийс: „Настоящото ни задоволство (от нашето състояние на разбиране) може да отразява недостатъчността на данните, а не съвършенството на теорията.“

Несигурността се отнася, между впрочем, както за относително близки неща, така и за далечната периферия на вселената. Както отбелязва Донълд Голдсмит, когато астрономите казват, че галактиката M87 е на 60 милиона светлини години, това, което наистина имат предвид („но често не подчертават пред широката публика“), че е някъде на разстояние между 40 милиона и 90 милиона светлинни години — което не е съвсем едно и също. За вселената като цяло нещата естествено са още по-несигурни. Като се има предвид всичко това, днес най-добрите залагания за възрастта на вселената са, изглежда, в интервала от около 12 милиарда до 13,5 милиарда години, но сме доста далеч от постигане на единодушие.

Една интересна теория, която наскоро бе предложена, е, че вселената не е толкова голяма, колкото предполагаме, и че като се взираме надалече, някои от галактиките, които виждаме, може да са само отражения, призрачни образи, създадени от рикоширала светлина.

Факт е, че има много, дори на фундаментално ниво, което не знаем — и не на последно място не знаем от какво е направена вселената. Когато учените изчисляват количеството материя, нужно за съвместното съществуване на всичко известно, винаги отчаяни установяват недостиг. Изглежда, че 90% от вселената, а навярно дори и 99% е съставена от това, което Фриц Цвики нарича „тъмна материя“ — материя, която в същината си е невидима за нас. Малко обидно е, като си помислим, че живеем във вселена, която в по-голямата й част дори не можем да видим, но такива са нещата. Поне имената на двата вероятни виновника са забавни: смята се, че това са или WIPMs (от Weakly Interacting Massive Particles — слабо взаимодействащи масивни частици, което означава частички от невидима материя, останала от Големия взрив) или MACHOs (от MAssive Compact Halo Objects — масивни компактни хало обекти — всъщност друго име за черните дупки, кафявите джуджета и други много мъгляви звезди).

Физиците специалисти по елементарните частици предпочитат обясненията чрез слабите WIMPs, а астрофизиците — звездните обяснения чрез мъжествените MACHOs. За известно време MACHOs взели връх, но не били открити достатъчно количество от тях и предпочитанията се насочили обратно към WIMPs, но при тях проблемът е, че никакви WIMPs не са открити въобще. Тъй като те слабо си взаимодействат (ако се приеме, че съществуват), са трудни за откриване. При изследванията космическите лъчи ще причинят твърде големи смущения. Така че за целта учените трябва да отидат надълбоко в земята. Един километър подземно космическо бомбардиране ще бъде една милионна от това, което е на повърхността. Но дори, когато всичко това се прибави, „две трети от вселената пак липсва от баланса“ — както се изрази един коментатор. За момента можем направо да ги наречем DUNNOS — от Dark Unknown Nonreflective Nondetectable Objects Somewhere — тъмни, непознати, неотразяващи, неоткриваеми обекти, някъде там (което съкращение, ако се прочете като дума на диалектен английски, значи просто „не знам“ — Бел.прев.).

 

Нови доказателства показват, че галактиките не само се разбягват от нас, но го правят с увеличаваща се скорост. Това е против всички очаквания. Изглежда, че вселената не само е изпълнена с тъмна материя, но и с тъмна енергия. Учените понякога я наричат вакуумна енергия или, по-екзотично, квинтесенция. Каквато и да е тя, изглежда че води до разширяване, което никой не може да обясни напълно. Теорията е, че празното пространство всъщност не е толкова празно — че има частици материя и антиматерия, чието съществуване ту започва, ту спира отново — и че те изтикват вселената навън с нарастваща скорост. Невероятното е, че единственото нещо, което обяснява всичко това, е космологичната константа на Айнщайн — мъничкото математика, която вмъкнал в теорията на относителността, за да възпре предполагаемото разширяване на вселената и я нарекъл „най-голямата грешка в живота ми.“ Сега изглежда, че може би в края на краищата правилно е оценил нещата.

Резултатът от всичко това е, че живеем във вселена, чиято възраст не можем добре да изчислим, заобиколена от звезди, разстоянията до които не знаем, изпълнена с материя, която не можем да идентифицираме и държаща се според физични закони, чиито характеристики не разбираме напълно.

И с тази доста обезпокоителна нотка, нека да се върнем към планетата Земя и да разгледаме нещо, което наистина разбираме — макар че вече няма да сте изненадани да чуете, че не го разбираме напълно, а това, което разбираме, го разбираме отскоро.

Бележки

[1] Има и практически резултати от тези скъпи начинания. Световната глобална мрежа — World Wide Web, известна като Интернет, е продукт на CERN. Изобретена е от учен от CERN — Тим Бърнърс Лий, през 1989 г.

[2] Разбира се, имате правото да се чудите какво точно се има предвид под „константа 50“ или „константа 100“. Отговорът се намира в астрономическите мерни единици. Освен в разговорния език астрономите не използват единицата светлинни години. Използват разстояние, наречено парсек (съкращение от паралакс и секунда), основано на универсална единица, наречена звезден паралакс, равен на 3,26 светлинни години. Много големи разстояния като размерът на вселената се измерват в мегапарсеци (милиони парсека). Константата се изразява в километри в секунда за мегапарсек. Така че, когато астрономите казват константа на Хъбъл 50, това, което имат предвид, е „50 километра в секунда за мегапарсек.“ За повечето от нас това е една абсолютно безполезна мярка, но що се отнася до астрономическите мерни единици, повечето разстояния са толкова огромни, че тези мерки са много полезни.